linkedin reddit search_black sharethis
619 Publications

Quadrature by fundamental solutions: kernel-independent layer potential evaluation for large collections of simple objects

Well-conditioned boundary integral methods for the solution of elliptic boundary value problems (BVPs) are powerful tools for static and dynamic physical simulations. When there are many close-to-touching boundaries (eg, in complex fluids) or when the solution is needed in the bulk, nearly-singular integrals must be evaluated at many targets. We show that precomputing a linear map from surface density to an effective source representation renders this task highly efficient, in the common case where each object is "simple", ie, its smooth boundary needs only moderately many nodes. We present a kernel-independent method needing only an upsampled smooth surface quadrature, and one dense factorization, for each distinct shape. No (near-)singular quadrature rules are needed. The resulting effective sources are drop-in compatible with fast algorithms, with no local corrections nor bookkeeping. Our extensive numerical tests include 2D FMM-based Helmholtz and Stokes BVPs with up to 1000 objects (281000 unknowns), and a 3D Laplace BVP with 10 ellipsoids separated by 1/30 of a diameter. We include a rigorous analysis for analytic data in 2D and 3D.

Show Abstract
September 18, 2021

Attenuated activation of pulmonary immune cells in mRNA-1273–vaccinated hamsters after SARS-CoV-2 infection

Michelle Meyer, X. Chen, O. Troyanskaya, et al.

The mRNA-1273 vaccine is effective against SARS-CoV-2 and was granted emergency use authorization by the FDA. Clinical studies, however, cannot provide the controlled response to infection and complex immunological insight that are only possible with preclinical studies. Hamsters are the only model that reliably exhibits severe SARS-CoV-2 disease similar to that in hospitalized patients, making them pertinent for vaccine evaluation. We demonstrate that prime or prime-boost administration of mRNA-1273 in hamsters elicited robust neutralizing antibodies, ameliorated weight loss, suppressed SARS-CoV-2 replication in the airways, and better protected against disease at the highest prime-boost dose. Unlike in mice and nonhuman primates, low-level virus replication in mRNA-1273–vaccinated hamsters coincided with an anamnestic response. Single-cell RNA sequencing of lung tissue permitted high-resolution analysis that is not possible in vaccinated humans. mRNA-1273 prevented inflammatory cell infiltration and the reduction of lymphocyte proportions, but enabled antiviral responses conducive to lung homeostasis. Surprisingly, infection triggered transcriptome programs in some types of immune cells from vaccinated hamsters that were shared, albeit attenuated, with mock-vaccinated hamsters. Our results support the use of mRNA-1273 in a 2-dose schedule and provide insight into the potential responses within the lungs of vaccinated humans who are exposed to SARS-CoV-2.

Show Abstract

Topological braiding and virtual particles on the cell membrane

Jinghui Liu, Jan F. Totz, P. Miller

Braiding of topological structures in complex matter fields provides a robust framework for encoding and processing information, and it has been extensively studied in the context of topological quantum computation. In living systems, topological defects are crucial for the localization and organization of biochemical signaling waves, but their braiding dynamics remain unexplored. Here, we show that the spiral wave cores, which organize the Rho-GTP protein signaling dynamics and force generation on the membrane of starfish egg cells, undergo spontaneous braiding dynamics. Experimentally measured world line braiding exponents and topological entropy correlate with cellular activity and agree with predictions from a generic field theory. Our analysis further reveals the creation and annihilation of virtual quasi-particle excitations during defect scattering events, suggesting phenomenological parallels between quantum and living matter.

Show Abstract

Evaluating the Arrhenius equation for developmental processes

Joseph Crapse, Nishant Pappireddi, S. Shvartsman, et al.

The famous Arrhenius equation is well suited to describing the temperature dependence of chemical reactions but has also been used for complicated biological processes. Here, we evaluate how well the simple Arrhenius equation predicts complex multi-step biological processes, using frog and fruit fly embryogenesis as two canonical models. We find that the Arrhenius equation provides a good approximation for the temperature dependence of embryogenesis, even though individual developmental intervals scale differently with temperature. At low and high temperatures, however, we observed significant departures from idealized Arrhenius Law behavior. When we model multi-step reactions of idealized chemical networks, we are unable to generate comparable deviations from linearity. In contrast, we find the two enzymes GAPDH and β-galactosidase show non-linearity in the Arrhenius plot similar to our observations of embryonic development. Thus, we find that complex embryonic development can be well approximated by the simple Arrhenius equation regardless of non-uniform developmental scaling and propose that the observed departure from this law likely results more from non-idealized individual steps rather than from the complexity of the system.

Show Abstract

From complex datasets to predictive models of embryonic development

Sayantan Dutta , Aleena L. Patel, Shannon E. Keenan, S. Shvartsman

Modern studies of embryogenesis are increasingly quantitative, powered by rapid advances in imaging, sequencing and genome manipulation technologies. Deriving mechanistic insights from the complex datasets generated by these new tools requires systematic approaches for data-driven analysis of the underlying developmental processes. Here, we use data from our work on signal-dependent gene repression in the Drosophila embryo to illustrate how computational models can compactly summarize quantitative results of live imaging, chromatin immunoprecipitation and optogenetic perturbation experiments. The presented computational approach is ideally suited for integrating rapidly accumulating quantitative data and for guiding future studies of embryogenesis.

Show Abstract

Lévy Walks and Path Chaos in the Dispersal of Elongated Structures Moving across Cellular Vortical Flows

Shi-Yuan Hu, Jun-Jun Chu, M. Shelley, Jun Zhang

In cellular vortical flows, namely arrays of counterrotating vortices, short but flexible filaments can show simple random walks through their stretch-coil interactions with flow stagnation points. Here, we study the dynamics of semirigid filaments long enough to broadly sample the vortical field. Using simulation, we find a surprising variety of long-time transport behavior—random walks, ballistic transport, and trapping—depending upon the filament’s relative length and effective flexibility. Moreover, we find that filaments execute Lévy walks whose diffusion exponents generally decrease with increasing filament length, until transitioning to Brownian walks. Lyapunov exponents likewise increase with length. Even completely rigid filaments, whose dynamics is finite dimensional, show a surprising variety of transport states and chaos. Fast filament dispersal is related to an underlying geometry of “conveyor belts.” Evidence for these various transport states is found in experiments using arrays of counterrotating rollers, immersed in a fluid and transporting a flexible ribbon.

Show Abstract

A multiscale biophysical model gives quantized metachronal waves in a lattice of cilia

B. Chakrabarti, S. Fürthauer, M. Shelley

Motile cilia are slender, hair-like cellular appendages that spontaneously oscillate under the action of internal molecular motors and are typically found in dense arrays. These active filaments coordinate their beating to generate metachronal waves that drive long-range fluid transport and locomotion. Until now, our understanding of their collective behavior largely comes from the study of minimal models that coarse-grain the relevant biophysics and the hydrodynamics of slender structures. Here we build on a detailed biophysical model to elucidate the emergence of metachronal waves on millimeter scales from nanometer scale motor activity inside individual cilia. Our study of a 1D lattice of cilia in the presence of hydrodynamic and steric interactions reveals how metachronal waves are formed and maintained. We find that in homogeneous beds of cilia these interactions lead to multiple attracting states, all of which are characterized by an integer charge that is conserved. This even allows us to design initial conditions that lead to predictable emergent states. Finally, and very importantly, we show that in nonuniform ciliary tissues, boundaries and inhomogeneities provide a robust route to metachronal waves.

Show Abstract
August 3, 2021

Active microphase separation in mixtures of microtubules and tip-accumulating molecular motors

B. Lemma, N. P. Mitchell, D. Needleman, et al.

Mixtures of microtubules and molecular motors form active materials with diverse dynamical behaviors that vary based on their constituents' molecular properties. We map the non-equilibrium phase diagram of microtubules and tip-accumulating kinesin-4 molecular motors. We find that kinesin-4 can drive either global contractions or turbulent-like extensile dynamics, depending on the concentrations of both microtubules and a bundling agent. We also observe a range of spatially heterogeneous non-equilibrium phases, including finite-sized radial asters, 1D wormlike chains, extended 2D bilayers, and system-spanning 3D active foams. Finally, we describe intricate kinetic pathways that yield microphase separated structures and arise from the inherent frustration between the orientational order of filamentous microtubules and the positional order of tip-accumulating molecular motors. Our work shows that the form of active stresses and phases in cytoskeletal networks are not solely dictated by the properties of individual motors and filaments, but are also contingent on the constituent's concentrations and spatial arrangement.

Show Abstract
arXiv:2107.12281v2
August 3, 2021

Decoding disease: from genomes to networks to phenotypes

A. Wong, R. Sealfon, Chandra L. Theesfeld, O. Troyanskaya

Interpreting the effects of genetic variants is key to understanding individual susceptibility to disease and designing personalized therapeutic approaches. Modern experimental technologies are enabling the generation of massive compendia of human genome sequence data and associated molecular and phenotypic traits, together with genome-scale expression, epigenomics and other functional genomic data. Integrative computational models can leverage these data to understand variant impact, elucidate the effect of dysregulated genes on biological pathways in specific disease and tissue contexts, and interpret disease risk beyond what is feasible with experiments alone. In this Review, we discuss recent developments in machine learning algorithms for genome interpretation and for integrative molecular-level modelling of cells, tissues and organs relevant to disease. More specifically, we highlight existing methods and key challenges and opportunities in identifying specific disease-causing genetic variants and linking them to molecular pathways and, ultimately, to disease phenotypes.

Show Abstract

Signatures of elastoviscous buckling in the dilute rheology of stiff polymers

B. Chakrabarti, Y. Liu, O. du Roure, A. Linder, D. Saintillan

As a stiff polymer tumbles in shear flow, it experiences compressive viscous forces that can cause it to buckle and undergo a sequence of morphological transitions with increasing flow strength. We use numerical simulations to uncover the effects of these transitions on the steady shear rheology of a dilute suspension of stiff polymers. Our results agree with classic scalings for Brownian rods in relatively weak flows but depart from them above the buckling threshold. Signatures of elastoviscous buckling include enhanced shear thinning and an increase in the magnitude of normal stress differences. We discuss our findings in the light of past work on rigid Brownian rods and non-Brownian elastic fibres and highlight the subtle role of thermal fluctuations in triggering instabilities.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates