linkedin reddit search_black sharethis
619 Publications

Engineering stability, longevity, and miscibility of microtubule-based active fluids

Pooja Chandrakar , John Berezney, D. Needleman, et al.

Microtubule-based active matter provides insight into the self-organization of motile interacting constituents. We describe several formulations of microtubule-based 3D active isotropic fluids. Dynamics of these fluids is powered by three types of kinesin motors: a processive motor, a non-processive motor, and a motor which is permanently linked to a microtubule backbone. Another modification uses a specific microtubule crosslinker to induce bundle formation instead of a non-specific polymer depletant. In comparison to the already established system, each formulation exhibits distinct properties. These developments reveal the temporal stability of microtubule-based active fluids while extending their reach and the applicability.

Show Abstract

Understanding topological defects in fluidized dry active nematics

Bryce Palmer, Patrick Govan, W. Yan, Tong Gao

Dense assemblies of self-propelling rods (SPRs) may exhibit fascinating collective behaviors and anomalous physical properties that are far away from equilibrium. Using large-scale Brownian dynamics simulations, we investigate the dynamics of disclination defects in 2D fluidized swarming motions of dense dry SPRs (i.e., without hydrodynamic effects) that form notable local positional topological structures that are reminiscent of smectic order. We find the deformations of smectic-like rod layers can create unique polar structures that lead to slow translations and rotations of ±1/2-order defects, which are fundamentally different from the fast streaming defect motions observed in wet active matter. We measure and characterize the statistical properties of topological defects and reveal their connections with the coherent structures. Furthermore, we construct a bottom-up active-liquid-crystal model to analyze the instability of polar lanes, which effectively leads to defect formation between interlocked polar lanes and serves as the origin of the large-scale swarming motions.

Show Abstract

Extensive analysis of mitochondrial DNA quantity and sequence variation in human cumulus cells and assisted reproduction outcomes

Kishlay Kumar, Marta Venturas, D. Needleman, et al.

Are relative mitochondrial DNA (mtDNA) content and mitochondrial genome (mtGenome) variants in human cumulus cells (CCs) associated with oocyte reproductive potential and assisted reproductive technology (ART) outcomes? Neither the CC mtDNA quantity nor the presence of specific mtDNA genetic variants was associated with ART outcomes, although associations with patient body mass index (BMI) were detected, and the total number of oocytes retrieved differed between major mitochondrial haplogroups.

Show Abstract

Motile dislocations knead odd crystals into whorls

Ephraim S. Bililign, Florencio Balboa Usabiaga,, M. Shelley, et al.

The competition between thermal fluctuations and potential forces governs the stability of matter in equilibrium, in particular the proliferation and annihilation of topological defects. However, driving matter out of equilibrium allows for a new class of forces that are neither attractive nor repulsive, but rather transverse. The possibility of activating transverse forces raises the question of how they affect basic principles of material self-organization and control. Here we show that transverse forces organize colloidal spinners into odd elastic crystals crisscrossed by motile dislocations. These motile topological defects organize into a polycrystal made of grains with tunable length scale and rotation rate. The self-kneading dynamics drive super-diffusive mass transport, which can be controlled over orders of magnitude by varying the spinning rate. Simulations of both a minimal model and fully resolved hydrodynamics establish the generic nature of this crystal whorl state. Using a continuum theory, we show that both odd and Hall stresses can destabilize odd elastic crystals, giving rise to a generic state of crystalline active matter. Adding rotations to a material’s constituents has far-reaching consequences for continuous control of structures and transport at all scales.

Show Abstract
December 16, 2021

Bidirectional communication in oogenesis: a dynamic conversation in mice and Drosophila

Caroline A. Doherty , Farners Amargant , S. Shvartsman, et al.

In most animals, the oocyte is the largest cell by volume. The oocyte undergoes a period of large-scale growth during its development, prior to fertilization. At first glance, tissues that support the development of the oocyte in different organisms have diverse cellular characteristics that would seem to prohibit functional comparisons. However, these tissues often act with a common goal of establishing dynamic forms of two-way communication with the oocyte. We propose that this bidirectional communication between oocytes and support cells is a universal phenomenon that can be directly compared across species. Specifically, we highlight fruit fly and mouse oogenesis to demonstrate that similarities and differences in these systems should be used to inform and design future experiments in both models.

Show Abstract
December 15, 2021

Cell cycle regulation of ER membrane biogenesis protects against chromosome missegregation

H. Merta, J. W. C. Rodríguez, D. Needleman, et al.

Failure to reorganize the endoplasmic reticulum (ER) in mitosis results in chromosome missegregation. Here, we show that accurate chromosome segregation in human cells requires cell cycle-regulated ER membrane production. Excess ER membranes increase the viscosity of the mitotic cytoplasm to physically restrict chromosome movements, which impedes the correction of mitotic errors leading to the formation of micronuclei. Mechanistically, we demonstrate that the protein phosphatase CTDNEP1 counteracts mTOR kinase to establish a dephosphorylated pool of the phosphatidic acid phosphatase lipin 1 in interphase. CTDNEP1 control of lipin 1 limits the synthesis of fatty acids for ER membrane biogenesis in interphase that then protects against chromosome missegregation in mitosis. Thus, regulation of ER size can dictate the biophysical properties of mitotic cells, providing an explanation for why ER reorganization is necessary for mitotic fidelity. Our data further suggest that dysregulated lipid metabolism is a potential source of aneuploidy in cancer cells.

Show Abstract

A coarse-grained NADH redox model enables inference of subcellular metabolic fluxes from fluorescence lifetime imaging

X. Yang, G. Ha, D. Needleman

Mitochondrial metabolism is of central importance to diverse aspects of cell and developmental biology. Defects in mitochondria are associated with many diseases, including cancer, neuropathology, and infertility. Our understanding of mitochondrial metabolism in situ and dysfunction in diseases are limited by the lack of techniques to measure mitochondrial metabolic fluxes with sufficient spatiotemporal resolution. Herein, we developed a new method to infer mitochondrial metabolic fluxes in living cells with subcellular resolution from fluorescence lifetime imaging of NADH. This result is based on the use of a generic coarse-grained NADH redox model. We tested the model in mouse oocytes and human tissue culture cells subject to a wide variety of perturbations by comparing predicted fluxes through the electron transport chain (ETC) to direct measurements of oxygen consumption rate. Interpreting the fluorescence lifetime imaging microscopy measurements of NADH using this model, we discovered a homeostasis of ETC flux in mouse oocytes: perturbations of nutrient supply and energy demand of the cell do not change ETC flux despite significantly impacting NADH metabolic state. Furthermore, we observed a subcellular spatial gradient of ETC flux in mouse oocytes and found that this gradient is primarily a result of a spatially heterogeneous mitochondrial proton leak. We concluded from these observations that ETC flux in mouse oocytes is not controlled by energy demand or supply, but by the intrinsic rates of mitochondrial respiration.

Show Abstract
November 22, 2021

Shift in MSL1 alternative polyadenylation in response to DNA damage protects cancer cells from chemotherapeutic agent-induced apoptosis

Alexander K. Kunisky , Vivian I. Anyaeche, C. Park, et al.

DNA damage reshapes the cellular transcriptome by modulating RNA transcription and processing. In cancer cells, these changes can alter the expression of genes in the immune surveillance and cell death pathways. Here, we investigate how DNA damage impacts alternative polyadenylation (APA) using the PAPERCLIP technique. We find that APA shifts are a coordinated response for hundreds of genes to DNA damage, and we identify PCF11 as an important contributor of DNA damage-induced APA shifts. One of these APA shifts results in upregulation of the full-length MSL1 mRNA isoform, which protects cells from DNA damage-induced apoptosis and promotes cell survival from DNA-damaging agents. Importantly, blocking MSL1 upregulation enhances cytotoxicity of chemotherapeutic agents even in the absence of p53 and overcomes chemoresistance. Our study demonstrates that characterizing adaptive APA shifts to DNA damage has therapeutic implications and reveals a link between PCF11, the MSL complex, and DNA damage-induced apoptosis.

Show Abstract
October 12, 2021

Collective oscillations of coupled cell cycles

Binglun Shao, Rocky Diegmiller, S. Shvartsman

Problems with networks of coupled oscillators arise in multiple contexts, commonly leading to the question about the dependence of network dynamics on network structure. Previous work has addressed this question in Drosophila oogenesis, where stable cytoplasmic bridges connect the future oocyte to the supporting nurse cells that supply the oocyte with molecules and organelles needed for its development. To increase their biosynthetic capacity, nurse cells enter the endoreplication program, a special form of the cell cycle formed by the iterated repetition of growth and synthesis phases without mitosis. Recent studies have revealed that the oocyte orchestrates nurse cell endoreplication cycles, based on retrograde (oocyte to nurse cells) transport of a cell cycle inhibitor produced by the nurse cells and localized to the oocyte. Furthermore, the joint dynamics of endocycles has been proposed to depend on the intercellular connectivity within the oocyte-nurse cell cluster. We use a computational model to argue that this connectivity guides, but does not uniquely determine the collective dynamics and identify several oscillatory regimes, depending on the time scale of intercellular transport. Our results provide insights into collective dynamics of coupled cell cycles and motivate future quantitative studies of intercellular communication in the germline cell clusters.

Show Abstract
October 5, 2021

Genetic and epigenetic coordination of cortical interneuron development

Kathryn C. Allaway, M. Gabitto, R. Bonneau, et al.

One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons. The two largest subtypes of cortical interneurons, parvalbumin- and somatostatin-positive cells, are morphologically and functionally distinct in adulthood but arise from common lineages within the medial ganglionic eminence.This makes them an attractive model for studying the generation of cell diversity. Here we examine how developmental changes in transcription and chromatin structure enable these cells to acquire distinct identities in the mouse cortex. Generic interneuron features are first detected upon cell cycle exit through the opening of chromatin at distal elements. By constructing cell-type-specific gene regulatory networks, we observed that parvalbumin- and somatostatin-positive cells initiate distinct programs upon settling within the cortex. We used these networks to model the differential transcriptional requirement of a shared regulator, Mef2c, and confirmed the accuracy of our predictions through experimental loss-of-function experiments. We therefore reveal how a common molecular program diverges to enable these neuronal subtypes to acquire highly specialized properties by adulthood. Our methods provide a framework for examining the emergence of cellular diversity, as well as for quantifying and predicting the effect of candidate genes on cell-type-specific development.

Show Abstract
September 22, 2021
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates