565 Publications

Development shapes the evolutionary diversification of rodent stripe patterns

Merlijn Staps, P. Miller, Corina E. Tarnita, Ricardo Mallarin

Vertebrate groups have evolved strikingly diverse color patterns. However, it remains unknown to what extent the diversification of such patterns has been shaped by the proximate, developmental mechanisms that regulate their formation. While these developmental mechanisms have long been inaccessible empirically, here we take advantage of recent insights into rodent pattern formation to investigate the role of development in shaping pattern diversification across rodents. Based on a broad survey of museum specimens, we first establish that various rodents have independently evolved diverse patterns consisting of longitudinal stripes, varying across species in number, color, and relative positioning. We then interrogate this diversity using a simple model that incorporates recent molecular and developmental insights into stripe formation in African striped mice. Our results suggest that, on the one hand, development has facilitated pattern diversification: The diversity of patterns seen across species can be generated by a single developmental process, and small changes in this process suffice to recapitulate observed evolutionary changes in pattern organization. On the other hand, development has constrained diversification: Constraints on stripe positioning limit the scope of evolvable patterns, and although pattern organization appears at first glance phylogenetically unconstrained, development turns out to impose a cryptic constraint. Altogether, this work reveals that pattern diversification in rodents can in part be explained by the underlying development and illustrates how pattern formation models can be leveraged to interpret pattern evolution.

Show Abstract

Modeling epithelial tissue and cell deformation dynamics using a viscoelastic slab sculpted by surface forces

During morphogenesis, epithelial monolayers actively alter their shape to create future body parts of the animal; this makes the epithelium one of the most active and critical structures in early animal development. While epithelia are often modeled as two-dimensional systems, real epithelia are not necessarily thin relative to cell cross section, and advances in 3D imaging have shown the possibility of substantial cell deformations in the third dimension, as well as differences in dynamics of the apical and basal surfaces indicative of three-dimensional coupling. With the importance of the third dimension in mind, we have developed a self-sculpting, three-dimensional model of epithelia whose dynamics are driven by active forces on its surface. We present a first, fundamental study for a reduced version of epithelia that investigates how surface forces affect its internal dynamics. Our model captures the 3D slab-like geometry of epithelia, viscoelasticity of tissue response, fluid surroundings, and driving from active surface forces. We represent epithelial tissue as a thick slab, a 3D continuum comprised of a Stokes fluid with an extra viscoelastic stress. Employing this model, we present both analytical and numerical solutions of the system and make quantitative predictions about cell shapes, cell dynamics, and the tissue's response to surface force in a three-dimensional setting. In particular, we investigate the implications of our model on the initiation of ventral furrow invagination and T1 transitions in Drosophila embryogenesis. In the former, we demonstrate the importance of fluid and geometric surroundings to drive invagination. In the latter, we show the limitations of surface forces alone to drive T1 transitions.

Show Abstract

Adaptive weighting of Bayesian physics informed neural networks for multitask and multiscale forward and inverse problems

Sarah Perez , S. Maddu, Ivo F. Sbalzarini, Philippe Poncet

In this paper, we present a novel methodology for automatic adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), and we demonstrate that this makes it possible to robustly address multi-objective and multiscale problems. BPINNs are a popular framework for data assimilation, combining the constraints of Uncertainty Quantification (UQ) and Partial Differential Equation (PDE). The relative weights of the BPINN target distribution terms are directly related to the inherent uncertainty in the respective learning tasks. Yet, they are usually manually set a-priori, that can lead to pathological behavior, stability concerns, and to conflicts between tasks which are obstacles that have deterred the use of BPINNs for inverse problems with multiscale dynamics.

The present weighting strategy automatically tunes the weights by considering the multitask nature of target posterior distribution. We show that this remedies the failure modes of BPINNs and provides efficient exploration of the optimal Pareto front. This leads to better convergence and stability of BPINN training while reducing sampling bias. The determined weights moreover carry information about task uncertainties, reflecting noise levels in the data and adequacy of the PDE model.

We demonstrate this in numerical experiments in Sobolev training, and compare them to analytically ε-optimal baseline, and in a multiscale Lotka-Volterra inverse problem. We eventually apply this framework to an inpainting task and an inverse problem, involving latent field recovery for incompressible flow in complex geometries.

Show Abstract

From localized to well mixed: How commuter interactions shape disease spread

Aaron Winn, Adam Konkol, E. Katifori

Interactions between commuting individuals can lead to large-scale spreading of rumors, ideas, or disease, even though the commuters have no net displacement. The emergent dynamics depend crucially on the commuting distribution of a population, that is how the probability to travel to a destination decays with distance from home. Applying this idea to epidemics, we will demonstrate the qualitatively different infection dynamics emerging from populations with different commuting distributions. If the commuting distribution is exponentially localized, then we recover a reaction-diffusion system and observe Fisher waves traveling at a speed proportional to the characteristic commuting distance. If the commuting distribution has a long tail, then no finite-velocity waves can form, but we show that, in some regimes, there is nontrivial spatial dependence that the well-mixed approximation neglects. We discuss how, in all cases, an initial dispersal-dominated regime can allow the disease to go undetected for a finite amount of time before exponential growth takes over. This “offset time” is a quantity of huge importance for epidemic surveillance and yet largely ignored in the literature.

Show Abstract

Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise

Aliza B. Rubenstein, X. Chen, O. Troyanskaya, et al.

Endurance exercise is an important health modifier. We studied cell-type specific adaptations of human skeletal muscle to acute endurance exercise using single-nucleus (sn) multiome sequencing in human vastus lateralis samples collected before and 3.5 hours after 40 min exercise at 70% VO2max in four subjects, as well as in matched time of day samples from two supine resting circadian controls. High quality same-cell RNA-seq and ATAC-seq data were obtained from 37,154 nuclei comprising 14 cell types. Among muscle fiber types, both shared and fiber-type specific regulatory programs were identified. Single-cell circuit analysis identified distinct adaptations in fast, slow and intermediate fibers as well as LUM-expressing FAP cells, involving a total of 328 transcription factors (TFs) acting at altered accessibility sites regulating 2,025 genes. These data and circuit mapping provide single-cell insight into the processes underlying tissue and metabolic remodeling responses to exercise.

Show Abstract
October 10, 2023

Identifying microscopic factors that influence ductility in disordered solids

Hongyi Xiao , Douglas J. Durian , Andrea J. Liu

There are empirical strategies for tuning the degree of strain localization in disordered solids, but they are system-specific and no theoretical framework explains their effectiveness or limitations. Here, we study three model disordered solids: a simulated atomic glass, an experimental granular packing, and a simulated polymer glass. We tune each system using a different strategy to exhibit two different degrees of strain localization. In tandem, we construct structuro-elastoplastic (StEP) models, which reduce descriptions of the systems to a few microscopic features that control strain localization, using a machine learning-based descriptor, softness, to represent the stability of the disordered local structure. The models are based on calculated correlations of softness and rearrangements. Without additional parameters, the models exhibit semiquantitative agreement with observed stress–strain curves and softness statistics for all systems studied. Moreover, the StEP models reveal that initial structure, the near-field effect of rearrangements on local structure, and rearrangement size, respectively, are responsible for the changes in ductility observed in the three systems. Thus, StEP models provide microscopic understanding of how strain localization depends on the interplay of structure, plasticity, and elasticity.

Show Abstract
October 9, 2023

A multifunctional Wnt regulator underlies the evolution of rodent stripe patterns

Matthew R. Johnson, P. Miller, S. Shvartsman, et al.

Animal pigment patterns are excellent models to elucidate mechanisms of biological organization. Although theoretical simulations, such as Turing reaction–diffusion systems, recapitulate many animal patterns, they are insufficient to account for those showing a high degree of spatial organization and reproducibility. Here, we study the coat of the African striped mouse (Rhabdomys pumilio) to uncover how periodic stripes form. Combining transcriptomics, mathematical modelling and mouse transgenics, we show that the Wnt modulator Sfrp2 regulates the distribution of hair follicles and establishes an embryonic prepattern that foreshadows pigment stripes. Moreover, by developing in vivo gene editing in striped mice, we find that Sfrp2 knockout is sufficient to alter the stripe pattern. Strikingly, mutants exhibited changes in pigmentation, revealing that Sfrp2 also regulates hair colour. Lastly, through evolutionary analyses, we find that striped mice have evolved lineage-specific changes in regulatory elements surrounding Sfrp2, many of which may be implicated in modulating the expression of this gene. Altogether, our results show that a single factor controls coat pattern formation by acting both as an orienting signalling mechanism and a modulator of pigmentation. More broadly, our work provides insights into how spatial patterns are established in developing embryos and the mechanisms by which phenotypic novelty originates.

Show Abstract

Design principles of Cdr2 node patterns in fission yeast cells

Hannah Opalko , Dimitrios Vavylonis

Pattern-forming networks have diverse roles in cell biology. Rod-shaped fission yeast cells use pattern formation to control the localization of mitotic signaling proteins and the cytokinetic ring. During interphase, the kinase Cdr2 forms membrane-bound multiprotein complexes termed nodes, which are positioned in the cell middle due in part to the node inhibitor Pom1 enriched at cell tips. Node positioning is important for timely cell cycle pro-gression and positioning of the cytokinetic ring. Here, we combined experimental and mod-eling approaches to investigate pattern formation by the Pom1-Cdr2 system. We found that Cdr2 nodes accumulate near the nucleus, and Cdr2 undergoes nucleocytoplasmic shuttling when cortical anchoring is reduced. We generated particle-based simulations based on tip inhibition, nuclear positioning, and cortical anchoring. We tested model predictions by inves-tigating Pom1-Cdr2 localization patterns after perturbing each positioning mechanism, in-cluding in both anucleate and multinucleated cells. Experiments show that tip inhibition and cortical anchoring alone are sufficient for the assembly and positioning of nodes in the ab-sence of the nucleus, but that the nucleus and Pom1 facilitate the formation of unexpected node patterns in multinucleated cells. These findings have implications for spatial control of cytokinesis by nodes and for spatial patterning in other biological systems.

Show Abstract

Atlas of primary cell-type-specific sequence models of gene expression and variant effects

Ksenia Sokolova , Chandra L. Theesfeld, A. Wong, O. Troyanskaya, et al.

Human biology is rooted in highly specialized cell types programmed by a common genome, 98% of which is outside of genes. Genetic variation in the enormous noncoding space is linked to the majority of disease risk. To address the problem of linking these variants to expression changes in primary human cells, we introduce ExPectoSC, an atlas of modular deep-learning-based models for predicting cell-type-specific gene expression directly from sequence. We provide models for 105 primary human cell types covering 7 organ systems, demonstrate their accuracy, and then apply them to prioritize relevant cell types for complex human diseases. The resulting atlas of sequence-based gene expression and variant effects is publicly available in a user-friendly interface and readily extensible to any primary cell types. We demonstrate the accuracy of our approach through systematic evaluations and apply the models to prioritize ClinVar clinical variants of uncertain significance, verifying our top predictions experimentally.

Show Abstract

Mitochondrial electron transport chain, ceramide and Coenzyme Q are linked in a pathway that drives insulin resistance in skeletal muscle

Alexis Diaz-Vegas, Soren Madsen, M. Astore, et al.

Insulin resistance (IR) is a complex metabolic disorder that underlies several human diseases, including type 2 diabetes and cardiovascular disease. Despite extensive research, the precise mechanisms underlying IR development remain poorly understood. Here, we provide new insights into the mechanistic connections between cellular alterations associated with IR, including increased ceramides, deficiency of coenzyme Q (CoQ), mitochondrial dysfunction, and oxidative stress. We demonstrate that elevated levels of ceramide in the mitochondria of skeletal muscle cells results in CoQ depletion and loss of mitochondrial respiratory chain components, leading to mitochondrial dysfunction and IR. Further, decreasing mitochondrial ceramide levels in vitro and in animal models (under chow and high fat diet) increased CoQ levels and was protective against IR. CoQ supplementation also rescued ceramide-associated IR. Examination of the mitochondrial proteome from human muscle biopsies revealed a strong correlation between the respirasome system and mitochondrial ceramide as key determinants of insulin sensitivity. Our findings highlight the mitochondrial Ceramide-CoQ-respiratory chain nexus as a potential foundation of an IR pathway that may also play a critical role in other conditions associated with ceramide accumulation and mitochondrial dysfunction, such as heart failure, cancer, and aging. These insights may have important clinical implications for the development of novel therapeutic strategies for the treatment of IR and related metabolic disorders.

Show Abstract
September 19, 2023
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates