565 Publications

Automated single-cell omics end-to-end framework with data-driven batch inference

Yun Wang, O. Troyanskaya, X. Chen, et al.

To facilitate single cell multi-omics analysis and improve reproducibility, we present SPEEDI (Single-cell Pipeline for End to End Data Integration), a fully automated end-to-end framework for batch inference, data integration, and cell type labeling. SPEEDI introduces data-driven batch inference and transforms the often heterogeneous data matrices obtained from different samples into a uniformly annotated and integrated dataset. Without requiring user input, it automatically selects parameters and executes pre-processing, sample integration, and cell type mapping. It can also perform downstream analyses of differential signals between treatment conditions and gene functional modules. SPEEDI’s data-driven batch inference method works with widely used integration and cell-typing tools. By developing data-driven batch inference, providing full end-to-end automation, and eliminating parameter selection, SPEEDI improves reproducibility and lowers the barrier to obtaining biological insight from these valuable single-cell datasets. The SPEEDI interactive web application can be accessed at https://speedi.princeton.edu/.

Show Abstract
November 4, 2023

Laser ablation and fluid flows reveal the mechanism behind spindle and centrosome positioning

Few techniques are available for studying the nature of forces that drive subcellular dynamics. Here we develop two complementary ones. The first is femtosecond stereotactic laser ablation, which rapidly creates complex cuts of subcellular structures and enables precise dissection of when, where and in what direction forces are generated. The second is an assessment of subcellular fluid flows by comparison of direct flow measurements using microinjected fluorescent nanodiamonds with large-scale fluid-structure simulations of different force transduction models. We apply these techniques to study spindle and centrosome positioning in early Caenorhabditis elegans embryos and to probe the contributions of microtubule pushing, cytoplasmic pulling and cortical pulling upon centrosomal microtubules. Based on our results, we construct a biophysical model to explain the dynamics of centrosomes. We demonstrate that cortical pulling forces provide a general explanation for many behaviours mediated by centrosomes, including pronuclear migration and centration, rotation, metaphase spindle positioning, asymmetric spindle elongation and spindle oscillations. This work establishes methodologies for disentangling the forces responsible for cell biological phenomena.

Show Abstract
November 2, 2023

Extracting thermodynamic properties from van ’t Hoff plots with emphasis on temperature-sensing ion channels

Jakob T. Bullerjahn, S. Hanson

Transient receptor potential (TRP) ion channels are among the most well-studied classes of temperature-sensing molecules. Yet, the molecular mechanism and thermodynamic basis for the temperature sensitivity of TRP channels remains to this day poorly understood. One hypothesis is that the temperature-sensing mechanism can simply be described by a difference in heat capacity between the closed and open channel states. While such a two-state model may be simplistic it nonetheless has descriptive value, in the sense that it can be used to compare overall temperature sensitivity between different channels and mutants. Here, we introduce a mathematical framework based on the two-state model to reliably extract temperature-dependent thermodynamic potentials and heat capacities from measurements of equilibrium constants at different temperatures. Our framework is implemented in an open-source data analysis package that provides a straightforward way to fit both linear and nonlinear van ’t Hoff plots, thus avoiding some of the previous, potentially erroneous, assumptions when extracting thermodynamic variables from TRP channel electrophysiology data.

Show Abstract
November 2, 2023

Phase plane dynamics of ERK phosphorylation

S. Shvartsman, Sarah McFann, Martin Wühr , Boris Y. Rubinstein

The extracellular signal–regulated kinase (ERK) controls multiple critical processes in the cell and is deregulated in human cancers, congenital abnormalities, immune diseases, and neurodevelopmental syndromes. Catalytic activity of ERK requires dual phosphorylation by an upstream kinase, in a mechanism that can be described by two sequential Michaelis-Menten steps. The estimation of individual reaction rate constants from kinetic data in the full mechanism has proved challenging. Here, we present an analytically tractable approach to parameter estimation that is based on the phase plane representation of ERK activation and yields two combinations of six reaction rate constants in the detailed mechanism. These combinations correspond to the ratio of the specificities of two consecutive phosphorylations and the probability that monophosphorylated substrate does not dissociate from the enzyme before the second phosphorylation. The presented approach offers a language for comparing the effects of mutations that disrupt ERK activation and function in vivo. As an illustration, we use phase plane representation to analyze dual phosphorylation under heterozygous conditions, when two enzyme variants compete for the same substrate.

Show Abstract

Universal scaling of shear thickening transitions

Meera Ramaswamy, E. Katifori, et al.

Nearly, all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition and give a complete theory of the viscosity in terms of a universal crossover scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find experimentally that for two different systems—cornstarch in glycerol and silica spheres in glycerol—the viscosity can be collapsed onto a single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes due to a crossover between frictionless isotropic jamming and frictional shear jamming, with different critical exponents. The material-specific behavior due to the microscale particle interactions is incorporated into a scaling variable governing the proximity to shear jamming, that depends on both stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium critical phenomena to elucidate fundamental physical aspects of the shear thickening transition.

Show Abstract

Contrastive power-efficient physical learning in resistor networks

Menachem Stern, Douglas Durian, Andrea Liu, et al.

The prospect of substantial reductions in the power consumption of AI is a major motivation for the development of neuromorphic hardware. Less attention has been given to the complementary research of power-efficient learning rules for such systems. Here we study self-learning physical systems trained by local learning rules based on contrastive learning. We show how the physical learning rule can be biased toward finding power-efficient solutions to learning problems, and demonstrate in simulations and laboratory experiments the emergence of a trade-off between power-efficiency and task performance.

Show Abstract
November 1, 2023

Nonlinear Classification Without a Processor

Sam Dillavou, Andrea Liu, Douglas Durian, et al.

Computers, as well as most neuromorphic hardware systems, use central processing and top-down algorithmic control to train for machine learning tasks. In contrast, brains are ensembles of 100 billion neurons working in tandem, giving them tremendous advantages in power efficiency and speed. Many physical systems `learn' through history dependence, but training a physical system to perform arbitrary nonlinear tasks without a processor has not been possible. Here we demonstrate the successful implementation of such a system - a learning meta-material. This nonlinear analog circuit is comprised of identical copies of a single simple element, each following the same local update rule. By applying voltages to our system (inputs), inference is performed by physics in microseconds. When labels are properly enforced (also via voltages), the system's internal state evolves in time, approximating gradient descent. Our system; it requires no processor. Once trained, it performs inference passively, requiring approximately 100~W of total power dissipation across its edges. We demonstrate the flexibility and power efficiency of our system by solving nonlinear 2D classification tasks. Learning meta-materials have immense potential as fast, efficient, robust learning systems for edge computing, from smart sensors to medical devices to robotic control.

Show Abstract
November 1, 2023

Stochastic force inference via density estimation

Inferring dynamical models from low-resolution temporal data continues to be a significant challenge in biophysics, especially within transcriptomics, where separating molecular programs from noise remains an important open problem. We explore a common scenario in which we have access to an adequate amount of cross-sectional samples at a few time-points, and assume that our samples are generated from a latent diffusion process. We propose an approach that relies on the probability flow associated with an underlying diffusion process to infer an autonomous, nonlinear force field interpolating between the distributions. Given a prior on the noise model, we employ score-matching to differentiate the force field from the intrinsic noise. Using relevant biophysical examples, we demonstrate that our approach can extract non-conservative forces from non-stationary data, that it learns equilibrium dynamics when applied to steady-state data, and that it can do so with both additive and multiplicative noise models.

Show Abstract

Lack of chromokinesin Klp-19 creates a more rigid midzone and affects force transmission during anaphase in C. elegans

Vitaly Zimyanin, Magdalena Maga, D. Needleman, et al.

Recent studies have highlighted the significance of the spindle midzone – the region positioned between chromosomes – in ensuring proper chromosome segregation. By combining advanced 3D electron tomography and cutting-edge light microscopy we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and the chromokinesin KLP-19 in C. elegans suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length and turn-over of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length in the spindle midzone, which also leads to increased microtubule – microtubule interaction, thus building up a more robust microtubule network. The spindle is globally stiffer and more stable, which has implications for the transmission of forces within the spindle affecting chromosome segregation dynamics. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.

Show Abstract
October 26, 2023

Scaffold Matcher: A CMA-ES based algorithm for identifying hotspot aligned peptidomimetic scaffolds

Erin R. Claussen, D. Renfrew, Christian L. Müller, Kevin Drew

The design of protein interaction inhibitors is a promising approach to address aberrant protein interactions that cause disease. One strategy in designing inhibitors is to use peptidomimetic scaffolds that mimic the natural interaction interface. A central challenge in using peptidomimetics as protein interaction inhibitors, however, is determining how best the molecular scaffold aligns to the residues of the interface it is attempting to mimic. Here we present the Scaffold Matcher algorithm that aligns a given molecular scaffold onto hotspot residues from a protein interaction interface. To optimize the degrees of freedom of the molecular scaffold we implement the covariance matrix adaptation evolution strategy (CMA-ES), a state-of-the-art derivative-free optimization algorithm in Rosetta. To evaluate the performance of the CMA-ES, we used 26 peptides from the FlexPepDock Benchmark and compared with three other algorithms in Rosetta, specifically, Rosetta's default minimizer, a Monte Carlo protocol of small backbone perturbations, and a Genetic algorithm. We test the algorithms' performance on their ability to align a molecular scaffold to a series of hotspot residues (i.e., constraints) along native peptides. Of the 4 methods, CMA-ES was able to find the lowest energy conformation for all 26 benchmark peptides. Additionally, as a proof of concept, we apply the Scaffold Match algorithm with CMA-ES to align a peptidomimetic oligooxopiperazine scaffold to the hotspot residues of the substrate of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our implementation of CMA-ES into Rosetta allows for an alternative optimization method to be used on macromolecular modeling problems with rough energy landscapes. Finally, our Scaffold Matcher algorithm allows for the identification of initial conformations of interaction inhibitors that can be further designed and optimized as high-affinity reagents.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates