linkedin reddit search_black sharethis
619 Publications

mRNA-1273 efficacy in a severe COVID-19 model: attenuated activation of pulmonary immune cells after challenge

M. Meyer, Y. Wang, D. Edwards, G. Smith, A. Rubenstein, P. Ramanathan, C. Mire, C. Pietzch, X. Chen, Y. Ge, W. Cheng, C. Henry, A. Woods, L. Ma, G. Stewart-Jones, K. Bock, M. Minai, B. Nagata, S. Periasamy, P. Shi, B. Graham, I. Moore, I. Ramos, O. Troyanskaya, E. Zaslavsky, A. Carfi, S. Sealfon, A. Bukreyev

The mRNA-1273 vaccine was recently determined to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from interim Phase 3 results. Human studies, however, cannot provide the controlled response to infection and complex immunological insight that are only possible with preclinical studies. Hamsters are the only model that reliably exhibit more severe SARS-CoV-2 disease similar to hospitalized patients, making them pertinent for vaccine evaluation. We demonstrate that prime or prime-boost administration of mRNA-1273 in hamsters elicited robust neutralizing antibodies, ameliorated weight loss, suppressed SARS-CoV-2 replication in the airways, and better protected against disease at the highest prime-boost dose. Unlike in mice and non-human primates, mRNA-1273- mediated immunity was non-sterilizing and coincided with an anamnestic response. Single-cell RNA sequencing of lung tissue permitted high resolution analysis which is not possible in vaccinated humans. mRNA-1273 prevented inflammatory cell infiltration and the reduction of lymphocyte proportions, but enabled antiviral responses conducive to lung homeostasis. Surprisingly, infection triggered transcriptome programs in some types of immune cells from vaccinated hamsters that were shared, albeit attenuated, with mock-vaccinated hamsters. Our results support the use of mRNA-1273 in a two-dose schedule and provides insight into the potential responses within the lungs of vaccinated humans who are exposed to SARS-CoV-2.

Show Abstract
January 25, 2021

Incomplete Cell Sorting Creates Engineerable Structures with Long-Term Stability

J. Tordoff, M. Krajnc, N. Walczak, M. Lima, J. Beal, S. Shvartsman, R. Weiss

Adhesion-mediated cell sorting has long been considered an organizing principle in developmental biology. While most computational models have emphasized the dynamics of segregation to fully sorted structures, cell sorting can also generate a plethora of transient, incompletely sorted states. The timescale of such states in experimental systems is unclear: if they are long-lived, they can be harnessed by development or engineered in synthetic tissues. Here, we use experiments and computational modeling to demonstrate how such structures can be systematically designed by quantitative control of cell composition. By varying the number of highly adhesive and less adhesive cells in multicellular aggregates, we find the cell-type ratio and total cell count control pattern formation, with resulting structures maintained for several days. Our work takes a step toward mapping the design space of self-assembling structures in development and provides guidance to the emerging field of shape engineering with synthetic biology.

Show Abstract

Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk

C. Park, J. Zhou, A. Wong, K. Chen, C. Theesfeld, R. Darnell, O. Troyanskaya

Despite the strong genetic basis of psychiatric disorders, the underlying molecular mechanisms are largely unmapped. RNA-binding proteins (RBPs) are responsible for most post-transcriptional regulation, from splicing to translation to localization. RBPs thus act as key gatekeepers of cellular homeostasis, especially in the brain. However, quantifying the pathogenic contribution of noncoding variants impacting RBP target sites is challenging. Here, we leverage a deep learning approach that can accurately predict the RBP target site dysregulation effects of mutations and discover that RBP dysregulation is a principal contributor to psychiatric disorder risk. RBP dysregulation explains a substantial amount of heritability not captured by large-scale molecular quantitative trait loci studies and has a stronger impact than common coding region variants. We share the genome-wide profiles of RBP dysregulation, which we use to identify DDHD2 as a candidate schizophrenia risk gene. This resource provides a new analytical framework to connect the full range of RNA regulation to complex disease.

Show Abstract

Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk

C. Park, J. Zhou, A. Wong, K. Chen, C. Theesfeld, R. Darnell , O. Troyanskaya

Despite the strong genetic basis of psychiatric disorders, the underlying molecular mechanisms are largely unmapped. RNA-binding proteins (RBPs) are responsible for most post-transcriptional regulation, from splicing to translation to localization. RBPs thus act as key gatekeepers of cellular homeostasis, especially in the brain. However, quantifying the pathogenic contribution of noncoding variants impacting RBP target sites is challenging. Here, we leverage a deep learning approach that can accurately predict the RBP target site dysregulation effects of mutations and discover that RBP dysregulation is a principal contributor to psychiatric disorder risk. RBP dysregulation explains a substantial amount of heritability not captured by large-scale molecular quantitative trait loci studies and has a stronger impact than common coding region variants. We share the genome-wide profiles of RBP dysregulation, which we use to identify DDHD2 as a candidate schizophrenia risk gene. This resource provides a new analytical framework to connect the full range of RNA regulation to complex disease.

Show Abstract
Nature Genetics, 53(2): 166-173
January 18, 2021

Swirling Instability of the Microtubule Cytoskeleton

D. Stein, G. De Canio, E. Lauga, M. Shelley, R. Goldstein

In the cellular phenomena of cytoplasmic streaming, molecular motors carrying cargo along a network of microtubules entrain the surrounding fluid. The piconewton forces produced by individual motors are sufficient to deform long microtubules, as are the collective fluid flows generated by many moving motors. Studies of streaming during oocyte development in the fruit fly Drosophila melanogaster have shown a transition from a spatially disordered cytoskeleton, supporting flows with only short-ranged correlations, to an ordered state with a cell-spanning vortical flow. To test the hypothesis that this transition is driven by fluid-structure interactions, we study a discrete-filament model and a coarse-grained continuum theory for motors moving on a deformable cytoskeleton, both of which are shown to exhibit a swirling instability to spontaneous large-scale rotational motion, as observed.

Show Abstract

From heterogeneous datasets to predictive models of embryonic development

S. Dutta, A. Patel, S. Keenan, S. Shvartsman

Modern studies of embryogenesis are increasingly quantitative, powered by rapid advances in imaging, sequencing, and genome manipulation technologies. Deriving mechanistic insights from the complex datasets generated by these new tools requires systematic approaches for data-driven analysis of the underlying developmental processes. Here we use data from our work on signal-dependent gene repression in the fruit fly, Drosophila melanogaster, to illustrate how computational models can compactly summarize quantitative results of live imaging, chromatin immunoprecipitation, and optogenetic perturbation experiments. The presented computational approach is ideally suited for integrating rapidly accumulating quantitative data and for guiding future studies of embryogenesis.

Show Abstract
January 13, 2021

A Micromachined Picocalorimeter Sensor for Liquid Samples with Application to Chemical Reactions and Biochemistry

Jinhye Bae, Juanjuan Zheng, D. Needleman

Calorimetry has long been used to probe the physical state of a system by measuring the heat exchanged with the environment as a result of chemical reactions or phase transitions. Application of calorimetry to microscale biological samples, however, is hampered by insufficient sensitivity and the difficulty of handling liquid samples at this scale. Here, a micromachined calorimeter sensor that is capable of resolving picowatt levels of power is described. The sensor consists of low-noise thermopiles on a thin silicon nitride membrane that allow direct differential temperature measurements between a sample and four coplanar references, which significantly reduces thermal drift. The partial pressure of water in the ambient around the sample is maintained at saturation level using a small hydrogel-lined enclosure. The materials used in the sensor and its geometry are optimized to minimize the noise equivalent power generated by the sensor in response to the temperature field that develops around a typical sample. The experimental response of the sensor is characterized as a function of thermopile dimensions and sample volume, and its capability is demonstrated by measuring the heat dissipated during an enzymatically catalyzed biochemical reaction in a microliter-sized liquid droplet. The sensor offers particular promise for quantitative measurements on biological systems.

Show Abstract
January 12, 2021

Identifying intracellular signaling modules and exploring pathways associated with breast cancer recurrence

X. Chen, J. Gu, A. Neuwald, L. Hilakivi-Clarke, R. Clarke, J. Xuan

Exploring complex modularization of intracellular signal transduction pathways is critical to understanding aberrant cellular responses during disease development and drug treatment. IMPALA (Inferred Modularization of PAthway LAndscapes) integrates information from high throughput gene expression experiments and genome-scale knowledge databases to identify aberrant pathway modules, thereby providing a powerful sampling strategy to reconstruct and explore pathway landscapes. Here IMPALA identifies pathway modules associated with breast cancer recurrence and Tamoxifen resistance. Focusing on estrogen-receptor (ER) signaling, IMPALA identifies alternative pathways from gene expression data of Tamoxifen treated ER positive breast cancer patient samples. These pathways were often interconnected through cytoplasmic genes such as IRS1/2, JAK1, YWHAZ, CSNK2A1, MAPK1 and HSP90AA1 and significantly enriched with ErbB, MAPK, and JAK-STAT signaling components. Characterization of the pathway landscape revealed key modules associated with ER signaling and with cell cycle and apoptosis signaling. We validated IMPALA-identified pathway modules using data from four different breast cancer cell lines including sensitive and resistant models to Tamoxifen. Results showed that a majority of genes in cell cycle/apoptosis modules that were up-regulated in breast cancer patients with short survivals (< 5 years) were also over-expressed in drug resistant cell lines, whereas the transcription factors JUN, FOS, and STAT3 were down-regulated in both patient and drug resistant cell lines. Hence, IMPALA identified pathways were associated with Tamoxifen resistance and an increased risk of breast cancer recurrence. The IMPALA package is available at https://dlrl.ece.vt.edu/software/.

Show Abstract

Identifying intracellular signaling modules and exploring pathways associated with breast cancer recurrence

X. Chen, J. Gu, A. Neuwald, L. Hilakivi-Clarke, R. Clarke, J. Xuan

Exploring complex modularization of intracellular signal transduction pathways is critical to understanding aberrant cellular responses during disease development and drug treatment. IMPALA (Inferred Modularization of PAthway LAndscapes) integrates information from high throughput gene expression experiments and genome-scale knowledge databases to identify aberrant pathway modules, thereby providing a powerful sampling strategy to reconstruct and explore pathway landscapes. Here IMPALA identifies pathway modules associated with breast cancer recurrence and Tamoxifen resistance. Focusing on estrogen-receptor (ER) signaling, IMPALA identifies alternative pathways from gene expression data of Tamoxifen treated ER positive breast cancer patient samples. These pathways were often interconnected through cytoplasmic genes such as IRS1/2, JAK1, YWHAZ, CSNK2A1, MAPK1 and HSP90AA1 and significantly enriched with ErbB, MAPK, and JAK-STAT signaling components. Characterization of the pathway landscape revealed key modules associated with ER signaling and with cell cycle and apoptosis signaling. We validated IMPALA-identified pathway modules using data from four different breast cancer cell lines including sensitive and resistant models to Tamoxifen. Results showed that a majority of genes in cell cycle/apoptosis modules that were up-regulated in breast cancer patients with short survivals (< 5 years) were also over-expressed in drug resistant cell lines, whereas the transcription factors JUN, FOS, and STAT3 were down-regulated in both patient and drug resistant cell lines. Hence, IMPALA identified pathways were associated with Tamoxifen resistance and an increased risk of breast cancer recurrence. The IMPALA package is available at https://dlrl.ece.vt.edu/software/ .

Show Abstract
Scientific Reports , 11(1): 385
January 11, 2021

Identifying intracellular signaling modules and exploring pathways associated with breast cancer recurrence

X. Chen, A. Neuwald, L. Hilakivi-Clarke, R. Clarke, J. Xuan

Exploring complex modularization of intracellular signal transduction pathways is critical to understanding aberrant cellular responses during disease development and drug treatment. IMPALA (Inferred Modularization of PAthway LAndscapes) integrates information from high throughput gene expression experiments and genome-scale knowledge databases to identify aberrant pathway modules, thereby providing a powerful sampling strategy to reconstruct and explore pathway landscapes. Here IMPALA identifies pathway modules associated with breast cancer recurrence and Tamoxifen resistance. Focusing on estrogen-receptor (ER) signaling, IMPALA identifies alternative pathways from gene expression data of Tamoxifen treated ER positive breast cancer patient samples. These pathways were often interconnected through cytoplasmic genes such as IRS1/2, JAK1, YWHAZ, CSNK2A1, MAPK1 and HSP90AA1 and significantly enriched with ErbB, MAPK, and JAK-STAT signaling components. Characterization of the pathway landscape revealed key modules associated with ER signaling and with cell cycle and apoptosis signaling. We validated IMPALA-identified pathway modules using data from four different breast cancer cell lines including sensitive and resistant models to Tamoxifen. Results showed that a majority of genes in cell cycle/apoptosis modules that were up-regulated in breast cancer patients with short survivals (< 5 years) were also over-expressed in drug resistant cell lines, whereas the transcription factors JUN, FOS, and STAT3 were down-regulated in both patient and drug resistant cell lines. Hence, IMPALA identified pathways were associated with Tamoxifen resistance and an increased risk of breast cancer recurrence. The IMPALA package is available at https://dlrl.ece.vt.edu/software/.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates