The Geometry of Similarity Search
- Speaker
-
Alexandr Andoni, Ph.D.Columbia University
Presidential Lectures are a series of free public colloquia spotlighting groundbreaking research across four themes: neuroscience and autism science, physics, biology, and mathematics and computer science. These curated, high-level scientific talks feature leading scientists and mathematicians and are designed to foster discussion and drive discovery within the New York City research community. We invite those interested in these topics to join us for this weekly lecture series.
How does one efficiently search for similar items in a large dataset, say, of images? This is a classic algorithmic task that arises when dealing with massive datasets. Its applications span many areas, including information retrieval, machine learning, data mining, computer vision, signal processing, bioinformatics, etc. For example, this task underlies the classic ‘nearest neighbor’ classification rule in machine learning. The natural solution for similarity search — to scan the entire dataset, comparing a given item to each item in the dataset — is prohibitively slow for modern datasets.
Alexandr Andoni will describe how efficient solutions for similarity search benefit from the tools and perspectives of high-dimensional geometry. The latter emerged as the natural language of similarity search: e.g., a 20 x 20 pixel image naturally corresponds to a 400-dimensional vector, one coordinate per pixel. Andoni will show how geometric tools such as dimension reduction and randomized space partitions enable efficient similarity search algorithms.