1960 Publications

Protein dynamics underlying allosteric regulation

Miro A. Astore, Akshada S. Pradhan, E. Thiede, S. Hanson

Allostery is the mechanism by which information and control are propagated in biomolecules. It regulates ligand binding, chemical reactions, and conformational changes. An increasing level of experimental resolution and control over allosteric mechanisms promises a deeper understanding of the molecular basis for life and powerful new therapeutics. In this review, we survey the literature for an up-to-date biological and theoretical understanding of protein allostery. By delineating five ways in which the energy landscape or the kinetics of a system may change to give rise to allostery, we aim to help the reader grasp its physical origins. To illustrate this framework, we examine three systems that display these forms of allostery: allosteric inhibitors of beta-lactamases, thermosensation of TRP channels, and the role of kinetic allostery in the function of kinases. Finally, we summarize the growing power of computational tools available to investigate the different forms of allostery presented in this review.

Show Abstract

The chromatin landscape of healthy and injured cell types in the human kidney

Debora L. Gisch, Michelle Brennan, W. Mao , et al.

There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney’s active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.

Show Abstract

Modulation of Aβ 16–22 aggregation by glucose

Meenal Jain , A. Sahoo, Silvina Matysiak

The self-assembly of amyloid-beta (Aβ) peptides into fibrillar structures in the brain is a signature of Alzheimer's disease. Recent studies have reported correlations between Alzheimer's disease and type-2 diabetes. Structurally, hyperglycemia induces covalent protein crosslinkings by advanced glycation end products (AGE), which can affect the stability of Aβ oligomers. In this work, we leverage physics-based coarse-grained molecular simulations to probe alternate thermodynamic pathways that affect peptide aggregation propensities at varying concentrations of glucose molecules. Similar to previous experimental reports, our simulations show a glucose concentration-dependent increase in Aβ aggregation rates, without changes in the overall secondary structure content. We discovered that glucose molecules prefer partitioning onto the aggregate–water interface at a specific orientation, resulting in a loss of molecular rotational entropy. This effectively hastens the aggregation rates, as peptide self-assembly can reduce the available surface area for peptide–glucose interactions. This work introduces a new thermodynamic-driven pathway, beyond chemical cross-linking, that can modulate Aβ aggregation.

Show Abstract

Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak–Keller–Segel chemotaxis model

Trung V. Phan, H. Mattingly, et al.

Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak–Keller–Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.

Show Abstract
January 9, 2024

Non-genetic adaptation by collective migration

Lam Vo, H. Mattingly, et al.

Collective behaviors require coordination of individuals. Thus, a population must adjust its phenotypic distribution to adapt to changing environments. How can a population regulate its phenotypic distribution? One strategy is to utilize specialized networks for gene regulation and maintaining distinct phenotypic subsets. Another involves genetic mutations, which can be augmented by stress-response pathways. Here, we studied how a migrating bacterial population regulates its phenotypic distribution to traverse across diverse environments. We generated isogenic Escherichia coli populations with varying distributions of swimming behaviors and observed their phenotype distributions during migration in liquid and porous environments. Surprisingly, we found that during collective migration, the distributions of swimming phenotypes adapt to the environment without mutations or gene regulation. Instead, adaptation is caused by the dynamic and reversible enrichment of high-performing swimming phenotypes within each environment. This adaptation mechanism is supported by a recent theoretical study, which proposed that the phenotypic composition of a migrating population results from a balance between cell growth generating diversity and collective migration eliminating the phenotypes that are unable to keep up with the migrating group. Furthermore, by examining chemoreceptor abundance distributions during migration towards different attractants, we found that this mechanism acts on multiple chemotaxis-related traits simultaneously. Our findings reveal that collective migration itself can enable cell populations with continuous, multi-dimensional phenotypes to flexibly and rapidly adapt their phenotypic composition to diverse environmental conditions.

Show Abstract
January 3, 2024

Uniform approximation of common Gaussian process kernels using equispaced Fourier grids

A. Barnett, Philip Greengard, Ph.D., M. Rachh

The high efficiency of a recently proposed method for computing with Gaussian processes relies on expanding a (translationally invariant) covariance kernel into complex exponentials, with frequencies lying on a Cartesian equispaced grid. Here we provide rigorous error bounds for this approximation for two popular kernels—Matérn and squared exponential—in terms of the grid spacing and size. The kernel error bounds are uniform over a hypercube centered at the origin. Our tools include a split into aliasing and truncation errors, and bounds on sums of Gaussians or modified Bessel functions over various lattices. For the Matérn case, motivated by numerical study, we conjecture a stronger Frobenius-norm bound on the covariance matrix error for randomly-distributed data points. Lastly, we prove bounds on, and study numerically, the ill-conditioning of the linear systems arising in such regression problems.

Show Abstract

Decomposing imaginary time Feynman diagrams using separable basis functions: Anderson impurity model strong coupling expansion

J. Kaye, H. Strand, D. Golez

We present a deterministic algorithm for the efficient evaluation of imaginary time diagrams based on the recently introduced discrete Lehmann representation (DLR) of imaginary time Green's functions. In addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties, the DLR basis is separable in imaginary time, allowing us to decompose diagrams into linear combinations of nested sequences of one-dimensional products and convolutions. Focusing on the strong coupling bold-line expansion of generalized Anderson impurity models, we show that our strategy reduces the computational complexity of evaluating an $M$th-order diagram at inverse temperature $\beta$ and spectral width $\omega_{\max}$ from $\mathcal{O}((\beta \omega_{\max})^{2M-1})$ for a direct quadrature to $\mathcal{O}(M (\log (\beta \omega_{\max}))^{M+1})$, with controllable high-order accuracy. We benchmark our algorithm using third-order expansions for multi-band impurity problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling representing a minimal model of Ca$_2$RuO$_4$, demonstrating the promise of the method for modeling realistic strongly correlated multi-band materials. For both strong and weak coupling expansions of low and intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightforward, and robust black-box evaluation procedure. In this sense, it fills a gap between diagrammatic approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on Monte Carlo sampling of high-order diagrams.

Show Abstract

Influence of surface viscosities on the electrodeformation of a prolate viscous drop

H. Nganguia, Y.-N. Young, et al.

Contaminants and other agents are often present at the interface between two fluids, giving rise to rheological properties such as surface shear and dilatational viscosities. The dynamics of viscous drops with interfacial viscosities has attracted greater interest in recent years, due to the influence of surface rheology on deformation and the surrounding flows. We investigate the effects of shear and dilatational viscosities on the electro-deformation of a viscous drop using the Taylor–Melcher leaky dielectric model. We use a large deformation analysis to derive an ordinary differential equation for the drop shape. Our model elucidates the contributions of each force to the overall deformation of the drop and reveals a rich range of dynamic behaviors that show the effects of surface viscosities and their dependence on rheological and electrical properties of the system. We also examine the physical mechanisms underlying the observed behaviors by analyzing the surface dilatation and surface deformation.

Show Abstract
December 23, 2023

Finite Temperature Minimal Entangled Typical Thermal States Impurity Solver

We present a minimally entangled typical thermal state (METTS) quantum impurity solver for general multi-orbital systems at finite temperatures. We introduce an improved estimator for the single-particle Green's function that strongly reduces the large fluctuations at long imaginary time and low temperature, which were a severe limitation of the original algorithm. In combination with the fork tensor product states ansatz, we obtain a dynamical mean field theory (DMFT) quantum impurity solver, which we benchmark for single and three-band models down to low temperatures, including the effect of spin-orbit coupling in a realistic DMFT computation for the Hund's metal Sr2RuO4 down to low temperatures.

Show Abstract

Prebifurcation enhancement of imbibition-drainage hysteresis cycles

I. Lavi, et al.

The efficient transport of fluids through disordered media requires a thorough understanding of how the driving rate affects two-phase interface propagation. Despite our understanding of front dynamics in homogeneous environments, as well as how medium heterogeneities shape fluid interfaces at rest, little is known about the effects of localized topographical variations on large-scale interface dynamics. To gain physical insights into this problem, we study here oil-air displacements through an “imperfect” Hele-Shaw cell. Combining experiments, numerical simulations, and theory, we show that the flow rate dramatically alters the interface response to a porous constriction as one approaches the Saffman-Taylor instability, strictly under stable conditions. This gives rise to asymmetric imbibition–drainage hysteresis cycles that feature divergent extensions and nonlocal effects, all of which are aptly captured and explained by a minimal free boundary model.

Show Abstract
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates