linkedin reddit search_black sharethis
619 Publications

Kernel Aggregated Fast Multipole Method: Efficient summation of Laplace and Stokes kernel functions

Many different simulation methods for Stokes flow problems involve a common computationally intense task—the summation of a kernel function over O(N2) pairs of points. One popular technique
is the Kernel Independent Fast Multipole Method (KIFMM), which constructs a spatial adaptive octree and places a small number of equivalent multipole and local points around each octree box, and completes the kernel sum with O(N) performance. However, the KIFMM cannot be used directly with nonlinear kernels, can be inefficient for complicated linear kernels, and in general is difficult to implement compared to less-efficient alternatives such as Ewald-type methods. Here we present the Kernel Aggregated Fast Multipole Method (KAFMM), which overcomes these drawbacks by allowing different kernel functions to be used for specific stages of octree traversal. In many cases a simpler linear kernel suffices during the most extensive stage of octree traversal, even for nonlinear kernel summation problems. The KAFMM thereby improves computational efficiency in general and also allows efficient evaluation of some nonlinear kernel functions such as the regularized Stokeslet. We have implemented our method as an open-source software library STKFMM with support for Laplace kernels, the Stokeslet, regularized Stokeslet, Rotne-Prager-Yamakawa (RPY) tensor, and the Stokes double-layer and traction operators. Open and periodic boundary conditions are supported for all kernels, and the no-slip wall boundary condition is supported for the Stokeslet and RPY tensor.
The package is designed to be ready-to-use as well as being readily extensible to additional kernels. Massive parallelism is supported with mixed OpenMP and MPI.

Show Abstract
October 28, 2020

Specificities of modeling membrane proteins using multi-template homology modeling

J. Koehler, R. Bonneau

Structures of membrane proteins are challenging to determine experimentally and currently represent only about 2% of the structures in the ProteinDataBank. Because of this disparity, methods for modeling membrane proteins are fewer and of lower quality than those for modeling soluble proteins. However, better expression, crystallization, and cryo-EM techniques have prompted a recent increase in experimental structures of membrane proteins, which can act as templates to predict the structure of closely related proteins through homology modeling. Because homology modeling relies on a structural template, it is easier and more accurate than fold recognition methods or de novo modeling, which are used when the sequence similarity between the query sequence and the sequence of related proteins in structural databases is below 25%. In homology modeling, a query sequence is mapped onto the coordinates of a single template and refined. With the increase in available templates, several templates often cover overlapping segments of the query sequence. Multi-template modeling can be used to identify the best template for local segments and join them into a single model. Here we provide a protocol for modeling membrane proteins from multiple templates in the Rosetta software suite. This approach takes advantage of several integrated frameworks, namely RosettaScripts, RosettaCM, and RosettaMP with the membrane scoring function.

Show Abstract
October 23, 2020

Apical stress fibers enable a scaling between cell mechanical response and area in epithelial tissue

J. López-Gay, H. Nunley , M. Spencer, F. di Pietro, B. Guriao, F. Bosveld

Tissue development, homeostasis, and repair require cells to sense mechanical forces. Although many molecular actors implicated in cell mechanosensitivity have been extensively studied, the basis by which cells adapt their mechanical responses to their geometry remains poorly defined. López-Gay et al. now identify how two fundamental epithelial structures—stress fibers and tricellular junctions—endow Drosophila cells with an internal ruler to scale their mechanical response with their area. This work explains how cells of different sizes within an epithelial tissue collectively adapt their mechanical response to control tissue shape and proliferation. Scaling of biological properties with size is a core property of other biological systems.

Show Abstract
Science, 370:eabb2169
October 16, 2020

Computational design of mixed chirality peptide macrocycles with internal symmetry

V. Mulligan, C Kang, M Sawaya, S Rettie, X Li, I Antselovich, T Craven, A Watkins, J Labonte, F DiMaio, T Yeates, D Baker

Cyclic symmetry is frequent in protein and peptide homo‐oligomers, but extremely rare within a single chain, as it is not compatible with free N‐ and C‐termini. Here we describe the computational design of mixed‐chirality peptide macrocycles with rigid structures that feature internal cyclic symmetries or improper rotational symmetries inaccessible to natural proteins. Crystal structures of three C2‐ and C3‐symmetric macrocycles, and of six diverse S2‐symmetric macrocycles, match the computationally‐designed models with backbone heavy‐atom RMSD values of 1 Å or better. Crystal structures of an S4‐symmetric macrocycle (consisting of a sequence and structure segment mirrored at each of three successive repeats) designed to bind zinc reveal a large‐scale zinc‐driven conformational change from an S4‐symmetric apo‐state to a nearly inverted S4‐symmetric holo‐state almost identical to the design model. These symmetric structures provide promising starting points for applications ranging from design of cyclic peptide based metal organic frameworks to creation of high affinity binders of symmetric protein homo‐oligomers. More generally, this work demonstrates the power of computational design for exploring symmetries and structures not found in nature, and for creating synthetic switchable systems.

Show Abstract

SARS-CoV-2 receptor networks in diabetic and COVID-19 associated kidney disease

R Menon, E Otto, R. Sealfon, V Nair, A. Wong, C Theesfeld, X. Chen, Y Wang, A Boppana, J Luo, Y Yang, P Kasson, J Schaub, C Berthier, S Eddy , C Lienczewski , B Godfrey, S Dagenais , R Sohaney, J Hartman, D Fermin, L Subramanian, H Looker , J Harder, L Mariani, J Hodgin, J Sexton, C Wobus , A Naik, R Nelson, O. Troyanskaya, M Kretzler

COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2–infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19–related kidney damage.

Show Abstract

Identification of new therapeutic targets in CRLF2-overexpressing B-ALL through discovery of TF-gene regulatory interactions

S. Badri, B. Carella, P. Lhoumaud, D. Castro, C. Skok Gibbs, R. Raviram, S. Narang, N. Evensen, A. Watters, W. Carroll, R. Bonneau, J. Skok

Although genetic alterations are initial drivers of disease, aberrantly activated transcriptional regulatory programs are often responsible for the maintenance and progression of cancer. CRLF2-overexpression in B-ALL patients leads to activation of JAK-STAT, PI3K and ERK/MAPK signaling pathways and is associated with poor outcome. Although inhibitors of these pathways are available, there remains the issue of treatment-associated toxicities, thus it is important to identify new therapeutic targets. Using a network inference approach, we reconstructed a B-ALL specific transcriptional regulatory network to evaluate the impact of CRLF2-overexpression on downstream regulatory interactions.

Comparing RNA-seq from CRLF2-High and other B-ALL patients (CRLF2-Low), we defined a CRLF2-High gene signature. Patient-specific chromatin accessibility was interrogated to identify altered putative regulatory elements that could be linked to transcriptional changes. To delineate these regulatory interactions, a B-ALL cancer-specific regulatory network was inferred using 868 B-ALL patient samples from the NCI TARGET database coupled with priors generated from ATAC-seq peak TF-motif analysis. CRISPRi, siRNA knockdown and ChIP-seq of nine TFs involved in the inferred network were analyzed to validate predicted TF-gene regulatory interactions.

In this study, a B-ALL specific regulatory network was constructed using ATAC-seq derived priors. Inferred interactions were used to identify differential patient-specific transcription factor activities predicted to control CRLF2-High deregulated genes, thereby enabling identification of new potential therapeutic targets.

Show Abstract
September 26, 2020

Stoichiometric interactions explain spindle dynamics and scaling across 100 million years of nematode evolution

R. Farhadifar, C-H. Yu, G. Fabig, H-Y. Wu, D. Stein, M. Rockman, T. Müller-Reichert, M. Shelley, D. Needleman

The spindle shows remarkable diversity, and changes in an integrated fashion, as cells vary over evolution. Here, we provide a mechanistic explanation for variations in the first mitotic spindle in nematodes. We used a combination of quantitative genetics and biophysics to rule out broad classes of models of the regulation of spindle length and dynamics, and to establish the
importance of a balance of cortical pulling forces acting in different directions. These experiments led us to construct a model of cortical pulling forces in which the stoichiometric interactions of microtubules and force generators (each force generator can bind only one microtubule), is key to\ explaining the dynamics of spindle positioning and elongation, and spindle final length and scaling with cell size. This model accounts for variations in all the spindle traits we studied here, both within species and across nematode species spanning over 100 million years of evolution.

Show Abstract
September 23, 2020

Discriminatory Power of Combinatorial Antigen Recognition in Cancer T Cell Therapies

R Dannenfelser, G Allen, B VanderSluis, A Koegel, S Levinson, S Stark, V Yao, A Tadych, O. Troyanskaya, W Lim

Precise discrimination of tumor from normal tissues remains a major roadblock for therapeutic efficacy of chimeric antigen receptor (CAR) T cells. Here, we perform a comprehensive in silico screen to identify multi-antigen signatures that improve tumor discrimination by CAR T cells engineered to integrate multiple antigen inputs via Boolean logic, e.g., AND and NOT. We screen >2.5 million dual antigens and ∼60 million triple antigens across 33 tumor types and 34 normal tissues. We find that dual antigens significantly outperform the best single clinically investigated CAR targets and confirm key predictions experimentally. Further, we identify antigen triplets that are predicted to show close to ideal tumor-versus-normal tissue discrimination for several tumor types. This work demonstrates the potential of 2- to 3-antigen Boolean logic gates for improving tumor discrimination by CAR T cell therapies. Our predictions are available on an interactive web server resource (antigen.princeton.edu).

Show Abstract

Ultra-sharp pinnacles sculpted by natural convective dissolution

J Huang, J Tong, M. Shelley, L Ristroph

The evolution of landscapes, landforms, and other natural structures involves highly interactive physical and chemical processes that often lead to intriguing shapes and recurring motifs. Particularly intricate and fine-scale features characterize the so-called karst morphologies formed by mineral dissolution into water. An archetypal form is the tall, slender, and sharply tipped karst pinnacle or rock spire that appears in multitudes in striking landforms called stone forests, but whose formative mechanisms remain unclear due to complex, fluctuating, and incompletely understood developmental conditions. Here, we demonstrate that exceedingly sharp spires also form under the far-simpler conditions of a solid dissolving into a surrounding liquid. Laboratory experiments on solidified sugars in water show that needlelike pinnacles, as well as bed-of-nails-like arrays of pinnacles, emerge robustly from the dissolution of solids with smooth initial shapes. Although the liquid is initially quiescent and no external flow is imposed, persistent flows are generated along the solid boundary as dense, solute-laden fluid descends under gravity. We use these observations to motivate a mathematical model that links such boundary-layer flows to the shape evolution of the solid. Dissolution induces these natural convective flows that, in turn, enhance dissolution rates, and simulations show that this feedback drives the shape toward a finite-time singularity or blow-up of apex curvature that is cut off once the pinnacle tip reaches microscales. This autogenic mechanism produces ultra-fine structures as an attracting state or natural consequence of the coupled processes at work in the closed solid-fluid system.

Show Abstract
September 22, 2020

A convolutional neural network for common coordinate registration of high-resolution histology images

A. Daly, K. Geras, R. Bonneau

Registration of histology images from multiple sources is a pressing problem in large-scale studies of spatial -omics data. Researchers often perform “common coordinate registration,” akin to segmentation, in which samples are partitioned based on tissue type to allow for quantitative comparison of similar regions across samples. Accuracy in such registration requires both high image resolution and global awareness, which mark a difficult balancing act for contemporary deep learning architectures. We present a novel convolutional neural network (CNN) architecture that combines (1) a local classification CNN that extracts features from image patches sampled sparsely across the tissue surface, and (2) a global segmentation CNN that operates on these extracted features. This hybrid network can be trained in an end-to-end manner, and we demonstrate its relative merits over competing approaches on a reference histology dataset as well as two published spatial transcriptomics datasets. We believe that this paradigm will greatly enhance our ability to process spatial -omics data, and has general purpose applications for the processing of high-resolution histology images on commercially available GPUs.

Show Abstract
September 20, 2020
  • Previous Page
  • Viewing
  • Next Page
Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates