Quantum Cafe Webinar: Lei Wang

Date & Time


Title: Neural Canonical Transformations

Abstract: Canonical transformations play fundamental roles in simplifying and solving physical systems. However, their design and implementation can be challenging in the many-particle setting. Viewing canonical transformations from the angle of learnable diffeomorphism reveals a fruitful connection to normalizing flows in machine learning. The key issue is then how to impose physical constraints such as symplecticity, unitarity, and permutation equivariance in the flow transformations. In this talk, I will present the design and application of neural canonical transformations for several physical problems. Symplectic flow identifies independent and nonlinear modes of classical Hamiltonians and natural datasets. Fermi flow variationally solves ab initio many-electron problem at finite temperature.

February 23, 2021

Lei Wang: Neural Canonical Transformations

Advancing Research in Basic Science and MathematicsSubscribe to Flatiron Institute announcements and other foundation updates